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Abstract. Due to the promoted integration of renewable sources, a further growth 

of transient and decentralized generation is expected. In addition, peak loads and 

an increasing demand due to electrification are presumably. Thus, the existing 

supply and distribution infrastructure is running the risk of reaching its physical 

limits. To counteract and ensure grid reliability, load management strategies are 

crucial. In the context of this work, a method for a grid simulation method as-

sessing incentive driven autonomously optimized devices is presented. As an ex-

ample application, differently dimensioned battery energy storage systems are 

integrated into a distribution grid and driven autonomously by an incentive. A 

rural, lightly meshed grid topology from Vorarlberg is used in combination with 

historic smart meter household load consumption data from the same region to 

evaluate the effects, on peak-to-average power ratio and voltage quality. To ac-

count for positioning effects all possible battery positions are considered. Results 

show that the peak-to-average ratio at the feed-in point can be improved by ap-

prox. 21 % without simultaneously worsening the voltage quality. The results 

also confirm that the charge and discharge power of the battery energy storage 

shows a higher impact on the evaluated criteria than the energy capacity. 

Keywords: Grid Simulation, Autonomous Demand Side Management, Battery 

Energy Storage Systems. 

1 Introduction 

The knowledge about effects of load balancing measures by the use of controlled loads 

and storages in low-voltage distribution grids is limited. Beside numerous publications 

dealing with load flow calculations [1]–[3] and load management strategies [4]–[8], 

only a few publications consider both topics linked [9]–[12]. However, the behavior of 

the electrical grid supported by load balancing measures is of central importance to 

assess all possible effects. In order to predict the behavior well, the base loads at the 

individual nodes of the grid have to be deliberately chosen. Household loads [12] are 

often based on future estimates of load profiles. However, these load profiles do not 

determine the currently prevailing state. Several publications investigate the effects of 
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using electric vehicles as load balancing measure (vehicle-to-grid) [13]–[15]. The ve-

hicle batteries cannot be used unrestrictedly for the load balancing, since they are not 

permanently connected to the electrical grid. Therefore, battery energy storage systems 

(BESSs) for load balancing is frequently discussed [16]–[21]. In these publications, 

different sizes and battery technologies are debated and their suitability demonstrated. 

In this work, a method for a grid simulation method assessing incentive driven autono-

mously optimized devices is presented. In this context, the simulation method should 

show the effects of autonomously operating loads in a low-voltage distribution grid. As 

an example application autonomous BESSs [29] are connected to a rural grid from Vor-

arlberg. Anonymized smart meter household load consumption data form the same re-

gion are used as loads and are randomly allocated to the nodes of the electrical grid. 

Furthermore, a single BESS is attached to the grid. The impact of the autonomous op-

eration of a BESS with different maximum powers and capacities on the grid quality 

(peak-to-average power ratio (PAPR), voltage quality) is of strong interest in order to 

be able to answer the following two applied research questions: 1) Does autonomous 

load balancing of additional batteries improve or deteriorate the grid quality? 2) Which 

powers and capacities contribute to improvements or deterioration in grid quality? 

The results of the grid simulation for a given grid topology depend on a variety of se-

lectable parameters: The allocation of household loads in the distribution grid; The bat-

tery storage positioning in the distribution grid; The maximum power and capacity of 

the BESS. Therefore, parameterization of the BESS and its position has been varied. 

In Sec. 2, the detailed grid simulation approach is presented. Sec. 3 deals with the par-

ametrization of the electrical grid and the BESS, as well as the description of the dif-

ferent incentives. Furthermore, the simulation procedure is discussed and the results of 

the example application to BESS are shown. A brief conclusion and outlook is given in 

Sec. 4. 

2 Method 

The proposed simulation method allows simulating - in addition to arbitrary base load 

profiles and decentralized generation, e.g. PV feed in - incentive driven autonomously 

optimized devices in a low voltage distribution grid. Furthermore, it is possible to at-

tribute temporal changes of the state of the low voltage grid to the behavior of the loads. 

Thus, between two consecutive time steps, a closed loop between the grid and individ-

ual loads is achieved. In the case of incentive driven devices, this can lead to another 

timetable of this device, because of changed input parameters for the autonomous de-

vice. Another advantage is that the simulation is able to handle any kind of grid topol-

ogy. 

In order to achieve this high flexibility of loads within the simulation, we have devel-

oped three interfaces. One interface initializes the individual loads and the decentral-

ized, autonomously optimized devices. Another one determines the behavior of the au-

tonomously optimized devices. Using the third interface, the behavior of the base loads 

and autonomously optimized devices can be simulated. These interfaces are embedded 

into a program sequence, which is presented in detail in Fig. 1. 
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The program sequence initially defines the simulation time step ∆𝑡grid and the corre-

sponding amount of time steps 𝑛𝑔𝑟𝑖𝑑. Subsequently, the electrical grid is initialized by 

creating the impedance matrix 𝒵, which contains the grid topology information. After 

the grid has been fully determined, the loads can be linked to the individual nodes via 

a predefined function 𝑓𝑖𝑛𝑖𝑡. The initialization of a load is defined as follows: 

 (𝒙0, 𝒑, 𝒟, Δ𝑡opt) = 𝑓init(Δ𝑡grid, 𝑛grid), (1) 

where the initialization returns the initial state vector 𝒙0, the system parameters 𝒑 in a 

vector form, and disturbance matrix 𝒟 = (𝒅1, … , 𝒅𝑛grid
), where each column reflects 

a single time step ∆𝑡grid of the grid simulation. Additionally, the optimization time step 

Δ𝑡opt between subsequent optimizations of the device is determined and returned. After 

initializing the loads, the load flow calculation within the simulation can be executed. 

If the autonomous device is to be optimized at time 𝑡𝑖, the following optimization func-

tion 𝑓man is used to determine its future operation: 

 𝒖 = 𝑓man(𝒄, Δ𝑡𝑐 , 𝒳, 𝒑, Δ𝑡grid), (2) 

where 𝒄 is a vector representing an incentive function, Δ𝑡𝑐 is the corresponding time 

step of the incentive function, and 𝒳 = (𝒙0, 𝒙1, … , 𝒙𝑛𝑔𝑟𝑖𝑑
) is a matrix containing the 

history of the state vectors. The optimization function returns the decision function 𝒖, 

which represents the decision states of the autonomous optimized devices in the future. 

Subsequently the load current and the new states of the base loads and autonomously 

operated devices is iteratively calculated using the simulation function 𝑓sim, defined for 

a load as 

 (𝐼𝑖 , 𝒙𝑖+1 ) = 𝑓sim(𝑢𝑖 , 𝒙𝑖 , 𝒑, 𝒅𝑖 , 𝑈𝑖 , 𝑏𝑃𝑖 , Δ𝑡grid), (3) 

where 𝑢𝑖 represents the current decision, 𝒙𝑖 the current sate of the load, 𝒅𝑖  the current 

disturbances of the load , 𝑈𝑖 the current voltage at the node and 𝑏𝑃𝑖 the current base 

load of the household. The simulation function returns the current load current 𝐼𝑖  and 

updated state vector 𝒙𝑖+1. 

The load flow calculation is based on a direct method, in which the solution can be 

computed directly, if loads are given [22]–[25]. Ghatak at al. [22] provides a method in 

which both, line grids as well as lightly meshed grids, can be calculated. This method 

allows for solving the load flow by a single matrix multiplication in the form of 

 𝑼𝑖 = 𝑈Slack − 𝒵 ∙ 𝑰𝑖 , (4) 

where 𝑰𝒊 = (𝐼1, … , 𝐼𝑛𝐿𝑜𝑎𝑑
) is the current load current vector calculated by the simulation 

function 𝑓sim, 𝑈Slack is the reference voltage at the slack node, and 𝑼𝑖 is the current 

voltage vector, which represents the voltages at the individual nodes. However, the 

voltage obtained for each node influences the current of the load. Therefore, it requires 

several iterations of the load simulation and the load flow calculation until a stationary 

solution is reached. The solution is stationary if the voltage values at all nodes change 
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less than a predefined voltage value Δ𝑈 between two subsequent iterations. If the sim-

ulation reaches a stationary solution, the branch currents and the feed-in power are cal-

culated. Updating the incentive function is an optionally task during the simulation. 

Then, the simulation proceeds for the next time step, by increasing the simulation time. 

 

Fig. 1. Program flowchart of the grid simulation method including initialization, load flow cal-

culation, predefined functions and time management 

3 Application and Results 

As an example application of the grid simulation method, the effects of integrating in-

centive-driven BESS on a low voltage distribution grid is evaluated. The used storage 

systems are operating autonomously based on an incentive, as described in detail in 

previous publications [26], [29]. Thereby, the study intends to show the potential of 

BESSs for load balancing in a low-voltage distribution grid. 

3.1 Parameterization and Simulation 

For a high significance of this study, real data are preferably used. The low-voltage 

distribution grid, cf. Fig. 3 in the Appendix, and the household loads are based on real 

data from Vorarlberg. The battery storage specifications were modeled based on com-

mercially available systems and partly modified for our investigation, cf. Table 1 in the 

Appendix. All BESSs have a battery efficiency of 98 % and an AC/DC converter effi-

ciency of 96 %. As incentive function for the battery operation, a)  the Austrian day-
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ahead market price for electric energy (DA) and b) the future feed-in power at the feed-

in point is used (GL). The simulation is performed from 01.04.2016 00:15 to 

01.09.2016 00:15 with corresponding real household loads and the Austrian day-ahead 

market prices. 

To determine the effects of the load balancing measures, a reference simulation (Ref.) 

is conducted without a BESS. Then the grid simulation is extended by adding a BESS 

to a single grid node. The effects are evaluated. After completion, the BESS is placed 

to another node of the grid. This is continued until the BESS has occupied all nodes of 

the investigated grid. Then a different BESS from Table 1 is selected and the effects 

on the grid are again determined by positioning the BESS at every node once. This is 

done for all BESS as presented in Table 1 and for both incentive functions. 

3.2 Results 

Fig. 2 illustrates the PAPR* for selected BESSs with the same capacity, but different 

converter power and the two different incentives. PAPR* of all BESSs are listed in 

Table 1. Using the grid load as incentive reduces PAPR* independently of the BESS 

chosen. The best performing BESS (Nr. 9 in Table 1) with a power of 9.9 kW in Fig. 

2 shows a reduction of about 21 % compared to the reference case. The day-ahead price 

as incentive function increases PAPR* for all BESS parameterizations considered. 

As listed in Table 2 in the Appendix the maximum appearing voltage of BESS Nr. 9 

increases by about 8 V, the minimal voltage decreases by about 4 V and 8 V by the 

day-ahead incentive driven and grid load incentive driven BESS, respectively. How-

ever, the overall voltage quality remains almost the same. 

 

Fig. 2. Normalized peak-to-average power ratio PAPR*, average power 𝑆𝑠𝑙𝑎𝑐𝑘,𝑎𝑣𝑔 at the slack 

node and maximum power 𝑆𝑠𝑙𝑎𝑐𝑘,𝑚𝑎𝑥 at the slack node for different BESSs 
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4 Conclusion and Outlook 

A flexible grid simulation method for low-voltage distribution grids assessing demand 

side management driven load balancing strategies is applied to distributed, autono-

mously optimized devices. The knowledge of such balancing measures is limited but 

their behavior is of central importance since some effects can otherwise hardly be as-

sessed. In this work a rural, weakly meshed grid section from Vorarlberg, a province in 

Austria is used and smart meter data form the same region, are used as household loads. 

Different BESSs are used as autonomously optimized devices and one is selectively 

attached to a node in the grid. The BESS position is varied and the effects are deter-

mined. Two incentives are considered – the Austrian day-ahead price as a global formed 

market driven incentive and the future grid feed-in power as local peak load compen-

sation incentive. For the evaluation, power and voltage dependent characteristic values 

have been under consideration. 

Results showed that the capacity of the BESS has little influence on the balancing be-

havior. Instead the maximum charge and discharge power of the battery is essential. 

The simulation showed that real-time pricing incentives, reflecting, may worsen 

PAPR* and therefore deteriorate the grid quality. However, PAPR* could be improved 

by the use of the future feed-in power as incentive. Further investigations showed that 

PAPR* is practically independent from the position of the BESS in the grid, because 

the power at the feed-in point remains the same except for minimal changes due to 

transmission losses. The voltage values showed that there are no significant changes in 

the voltage quality. Only the minimal and maximal voltages increased and decreased, 

respectively, because the BESS is an additional load or generator with about 84 % of 

the average power at the feed-in point. BESS 9 performed best with respect to PAPR*, 

exhibiting a capacity of 14 kWh and a maximum power of 9.9 kW, which accounts for 

about 36 % of the average power at the feed-in point in the reference case. The limit 

values of the voltage are between 217.98 V and 231.07 V, in case of optimal positioning 

of the BESS. 

The proposed grid simulation method allows simulating time and grid dependent loads, 

which fulfill the given interfaces of the program. Therefore, it is possible to simulate 

any incentive driven loads, whose state depends on the incentive function, the current 

grid state and the actual time. As an outlook, autonomously optimized hot water heaters 

as described in [27], [28] can be tested for DSM performance. In addition, different 

management systems for electric vehicle charging in distribution grids can be evalu-

ated. 
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Appendix 

 

Fig. 3. Rural, lightly meshed low voltage distribution from Vorarlberg 

 

  



10 

Table 1. Power-dependent characteristic values of the different BESSs including peak-to-aver-

age power ration PAPR, normalized peak-to-average power ration PAPR*, average feed-in 

power 𝑆𝑠𝑙𝑎𝑐𝑘,𝑎𝑣𝑔, maximum feed-in power 𝑆𝑠𝑙𝑎𝑐𝑘,𝑚𝑎𝑥 and minimum feed-in power 𝑆𝑠𝑙𝑎𝑐𝑘,𝑚𝑖𝑛. 

For each value, all power values at every time step are evaluated. For the incentive driven simu-

lation (GL and DA), where the BESS is attached to each node once, all power values from each 

sub simulation are evaluated. 

BESS 
Power 

(kW) 

Capacity 

(kWh) 

PAPR 

(-) 

PAPR* 

(-) 

𝑆𝑠𝑙𝑎𝑐𝑘,𝑎𝑣𝑔 

(kVA) 

𝑆𝑠𝑙𝑐𝑎𝑘,𝑚𝑎𝑥 

(kVA) 

𝑆𝑠𝑙𝑎𝑐𝑘,𝑚𝑖𝑛 

(kVA) 

GL DA GL DA GL DA GL DA GL DA 

Ref - - 2.16 2.16 1.00 0.95 27.4 27.4 59.1 59.1 12.8 12.8 

1 3.3 6 2.27 2.03 1.05 0.89 27.5 27.5 62.7 55.8 9.9 14.8 

2 3.3 10 2.27 2.02 1.05 0.89 27.6 27.5 62.7 55.8 9.9 16.1 

3 3.3 14 2.27 2.02 1.05 0.89 27.6 27.5 62.7 55.8 9.9 16.1 

4 6.6 6 2.39 1.91 1.11 0.84 27.7 27.6 66.4 52.7 6.9 11.5 

5 6.6 10 2.38 1.90 1.11 0.84 27.7 27.6 66.4 52.5 6.9 11.5 

6 6.6 14 2.38 1.89 1.10 0.83 27.7 27.7 66.4 52.5 6.9 11.8 

7 9.9 6 2.50 1.94 1.16 0.86 27.8 27.7 70.2 54.2 4.0 8.2 

8 9.9 10 2.50 1.90 1.16 0.84 27.8 27.8 70.2 52.7 4.0 8.2 

9 9.9 14 2.50 1.80 1.16 0.79 27.8 27.8 70.2 50.2 4.0 8.2 

10 13.2 14 2.61 1.91 1.21 0.84 28.0 27.9 74.2 53.9 0.7 4.9 

11 16.5 14 2.72 2.03 1.26 0.89 28.1 28.0 78.2 57.7 -2.6 1.6 

12 19.8 14 2.47 2.02 1.14 0.89 27.8 27.7 69.2 56.1 4.9 9.1 

13 23.1 14 2.24 2.06 1.04 0.91 27.5 27.5 61.8 56.6 10.6 15.1 

14 13.2 18.7 2.47 2.03 1.15 0.89 27.7 27.7 69.2 56.1 4.8 9.1 

15 16.5 23.3 2.46 1.99 1.14 0.88 27.9 27.8 69.2 55.3 4.9 9.1 

16 19.8 28 2.26 2.04 1.05 0.90 27.5 27.5 62.4 56.1 10.2 15.1 

17 23.1 32.7 2.27 2.02 1.05 0.89 27.6 27.5 62.7 55.8 9.9 15.1 
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Table 2. Voltage-dependent characteristic values of the different BESSs including the average 

voltage 𝑈𝑎𝑣𝑔, the maximum voltage 𝑈𝑚𝑎𝑥, the minimum voltage 𝑈𝑚𝑖𝑛 and the standard deviation 

of the voltage 𝜎𝑈. For each value, all voltage values at each node and every time step are evalu-

ated. For the incentive driven (GL and DA) simulation, where the BESS is attached to each node 

once, all voltage values from each sub simulation are evaluated. 

BESS 
Power 

(kW) 

Capacity 

(kWh) 

𝑈𝑎𝑣𝑔 

(V) 
𝑈𝑚𝑎𝑥 
(V) 

𝑈𝑚𝑖𝑛 
(V) 

𝜎𝑈 
(V) 

GL DA GL DA GL DA GL DA 

Ref - - 228.7 228.7 230.0 230.0 219.7 219.7 0.87 0.87 

1 3.3 6 228.7 228.7 232.5 232.4 217.2 219.7 0.91 0.88 

2 3.3 10 228.7 228.7 232.5 232.4 217.2 219.7 0.92 0.88 

3 3.3 14 228.7 228.7 232.5 232.4 217.2 219.7 0.93 0.88 

4 6.6 6 228.7 228.7 235.2 235.2 214.6 218.1 1.02 0.96 

5 6.6 10 228.7 228.7 235.2 235.2 214.6 218.1 1.04 0.97 

6 6.6 14 228.7 228.7 235.2 235.2 214.6 218.1 1.05 0.98 

7 9.9 6 228.7 228.7 237.9 237.9 212.0 215.5 1.17 1.06 

8 9.9 10 228.7 228.7 237.9 237.9 212.0 215.5 1.19 1.10 

9 9.9 14 228.7 228.7 237.9 237.9 212.0 215.5 1.21 1.12 

10 13.2 14 228.7 228.7 240.6 240.5 209.3 212.8 1.39 1.27 

11 16.5 14 228.7 228.7 243.1 243.1 206.6 210.1 1.60 1.44 

12 19.8 14 228.7 228.7 237.2 237.1 212.7 216.2 1.11 1.00 

13 23.1 14 228.7 228.7 231.8 231.8 217.8 219.7 0.89 0.87 

14 13.2 18.7 228.7 228.7 237.2 237.1 212.7 216.2 1.11 1.00 

15 16.5 23.3 228.7 228.7 237.2 237.1 212.7 216.2 1.12 1.02 

16 19.8 28 228.7 228.7 232.2 232.2 217.4 219.7 0.91 0.88 

17 23.1 32.7 228.7 228.7 232.5 232.4 217.2 219.7 0.92 0.88 

 


